Spatial Modulation in the Underwater Acoustic Communication Channel

نویسندگان

  • Brian Kilfoyle
  • Arthur B. Baggeroer
  • Michael Triantafyllou
  • Daniel Brian Kilfoyle
چکیده

A modulation technique for increasing the reliable data rate achievable by an underwater acoustic communication system is presented and demonstrated. The technique, termed spatial modulation, seeks to control the spatial distribution of signal energy such that multiple parallel communication channels are supported by the single, physical ocean channel. Results from several experiments successfully demonstrate higher obtainable data rates and power throughput. Given a signal energy constraint, a communication architecture with access to parallel channels will have increased capacity and reliability as compared to one with access to a single channel. Assuming the use of multiple element spatial arrays at both the transmitter and receiver, an analytic framework is developed that allows a multiple input, multiple output physical channel to be transformed into a set of virtual parallel channels. The continuous time, vector singular value decomposition is the primary vehicle for this transformation. Given knowledge of the channel impulse responses and assuming additive, white Gaussian noise as the only interference, the advantages of using spatial modulation over a deterministic channel may be exactly computed. Improving performance over an ensemble of channels using spatial modulation is approached by defining and then optimizing various average performance metrics including average signal to noise ratio, average signal to noise plus interference ratio, and minimum square error. Several field experiments were conducted. Detailed channel impulse response measurements were made enabling application of the decomposition methodology. The number, strength, and stability of the available parallel channels were analyzed. The parallel channels were readily interpreted in terms of the underlying sound propagation field. Acoustic communication tests were conducted comparing conventional coherent modulation to spatial modulation. In one case, a reliable data rate of 24000 bits per second with a 4 kHz bandwidth signal was achieved with spatial modulation when conventional signaling could not achieve that rate. In another test, the benefits of spatial

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Equalization and Decoding Scheme for Underwater Acoustic Coherent Communications

Digital communications through underwater acoustic (UWA) channels differ from those in other media, such as radio channels, due to the high temporal and spatial variability of the acoustic channel which make the available bandwidth of the channel limited and dependent on both range and frequency. In order to overcome disadvantage factors and maximize performance to conduct real-time information...

متن کامل

Implementation of an adaptive burst DQPSK receiver over shallow water acoustic channel

In an environment such as underwater channel where placing test equipments are difficult to handle, it is much practical to have hardware simulators to examine suitably designed transceivers (transmitter/receiver). The simulators of this kind will then allow researchers to observe their intentions and carry out repetitive tests to find suitable digital coding/decoding algorithms. In this p...

متن کامل

A Novel Carrier Waveform Inter-Displacement Modulation Method in Underwater Communication Channel

As the main way of underwater wireless communication, underwater acoustic communication is one of the focuses of ocean research. Compared with the free space wireless communication channel, the underwater acoustic channel suffers from more severe multipath effect, the less available bandwidth and the even complex noise. The underwater acoustic channel is one of the most complicated wireless com...

متن کامل

Effect of Underwater Ambient Noise on Quadraphase Phase-shift Keying Acoustic Sensor Network Links in Extremely Low Frequency Band

This study evaluates the impact of underwater ambient noise using seven real noise samples; Dolphin, Rain, Ferry, Sonar, Bubbles, Lightning, and Outboard Motor in three frequency ranges in extremely low frequency (ELF) band. The ELF band is the most significant bandwidth for underwater long-range communication. ELF band which is extended from 3 to 3000 Hz clearly, faces bandwidth limitation. Me...

متن کامل

Spatial Reuse in Underwater Acoustic Networks using RTS/CTS MAC Protocols

Using analytic models and simulation results, we examine spatial reuse and the effectiveness of RTS/CTS MAC protocols in underwater acoustic networks. We are not looking at the question of network throughput, which is affected mostly by propagation delay, but rather the protocol’s ability to prevent collisions. RTS/CTS-based collision-avoidance protocols require successful detection of the hand...

متن کامل

On the Practical Aspects of Joint Passive Phase Conjugation and Equalization Underwater Communication Systems

Underwater acoustic communication systems suffer from the channel impairments which results in time spreading of the transmitted signal. In underwater environment, multiple replicas of the transmitted signal are received at the receiver through different paths, which causes significant Inter-Symbol Interference (ISI). Decision Feedback Equalizers (DFE) was utilized to overcome this type of inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014